- HTA8128 內(nèi)置升壓的60W立體聲D類音頻功放
- AU6815A集成音頻 DSP 的 2×25W 數(shù)字型 Cl
- HTN78A3 6V~140V輸入,3A實地異步降壓變換器
- HT81297 18W內(nèi)置升壓單聲道D類音頻功放
- NS2583 同步升壓型 2A 雙節(jié)鋰電池充電管理 IC
- NLC47022帶NTC功能和電量均衡功能電流2A 5V異
- PT2027 單觸控雙輸出 LED 調(diào)光 IC
- HT316C兼容HT326C防破音功能免電感濾波2×20WD
- HT3386兼容TPA3118 2×50W D類立體聲音頻功放
- NS8220 300mW 雙聲道耳機音頻放大器
- HT6875 2.8W防削頂單聲道D類音頻功率放大器
- HT77221 HT77211 4.0V~30V輸入,2A/1.2A同步降壓變換器
- NS4117X 系列 外置 MOS 管開關(guān)降壓型 LED 恒流控制器
- HT71663 13V,12A全集成同步升壓轉(zhuǎn)換器
碳化硅 (SiC) 與氮化鎵 (GaN)應(yīng)用差異
SiC 和 GaN 被稱為“寬帶隙半導(dǎo)體”(WBG)。由于使用的生產(chǎn)工藝,WBG 設(shè)備顯示出以下優(yōu)點:
1.寬帶隙半導(dǎo)體
氮化鎵(GaN)和碳化硅(SiC)在帶隙和擊穿場方面相對相似。氮化鎵的帶隙為3.2 eV,而碳化硅的帶隙為3.4 eV。雖然這些值看起來相似,但它們明顯高于硅的帶隙。硅的帶隙僅為1.1 eV,比氮化鎵和碳化硅小三倍。這些化合物的較高帶隙允許氮化鎵和碳化硅舒適地支持更高電壓的電路,但它們不能像硅那樣支持低壓電路。
2.擊穿場強度
氮化鎵和碳化硅的擊穿場相對相似,氮化鎵的擊穿場為3.3 MV/cm,而碳化硅的擊穿場為3.5 MV/cm。與普通硅相比,這些擊穿場使化合物明顯更好地處理更高的電壓。硅的擊穿場為0.3 MV/cm,這意味著氮化鎵和碳化硅保持更高電壓的能力幾乎高出十倍。它們還能夠使用明顯更小的器件支持較低的電壓。
3.高電子遷移率晶體管(HEMT)
氮化鎵和碳化硅之間最顯著的區(qū)別在于它們的電子遷移率,這表明電子在半導(dǎo)體材料中的移動速度。首先,硅的電子遷移率為1500 cm^2/Vs.氮化鎵的電子遷移率為2000 cm^2/Vs,這意味著電子的移動速度比硅的電子快30%以上。然而,碳化硅的電子遷移率為650 cm^2/Vs,這意味著碳化硅的電子比GaN和硅的電子移動得慢。憑借如此高的電子遷移率,GaN幾乎是高頻應(yīng)用的三倍。電子可以通過氮化鎵半導(dǎo)體比SiC快得多。
4.氮化鎵和碳化硅導(dǎo)熱系數(shù)
材料的導(dǎo)熱性是其通過自身傳遞熱量的能力??紤]到材料的使用環(huán)境,導(dǎo)熱系數(shù)直接影響材料的溫度。在大功率應(yīng)用中,材料的低效率會產(chǎn)生熱量,從而提高材料的溫度,并隨后改變其電氣特性。氮化鎵的導(dǎo)熱系數(shù)為1.3 W/cmK,實際上比硅的導(dǎo)熱系數(shù)差,硅的導(dǎo)率為1.5 W/cmK。然而,碳化硅的導(dǎo)熱系數(shù)為5 W/cmK,使其在傳遞熱負(fù)荷方面提高了近三倍。這一特性使碳化硅在高功率、高溫應(yīng)用中具有很高的優(yōu)勢。
5.半導(dǎo)體晶圓制造工藝
目前的制造工藝是氮化鎵和碳化硅的限制因素,因為這些工藝比廣泛采用的硅制造工藝更昂貴、精度更低或能源密集。例如,氮化鎵在小面積上含有大量的晶體缺陷。另一方面,硅每平方厘米只能包含100個缺陷。顯然,這種巨大的缺陷率使得GaN效率低下。雖然制造商近年來取得了長足的進步,但GaN仍在努力滿足嚴(yán)格的半導(dǎo)體設(shè)計要求。
6.功率半導(dǎo)體市場
與硅相比,目前的制造技術(shù)限制了氮化鎵和碳化硅的成本效益,使這兩種高功率材料在短期內(nèi)更加昂貴。然而,這兩種材料在特定半導(dǎo)體應(yīng)用中都具有強大的優(yōu)勢。
碳化硅在短期內(nèi)可能是一種更有效的產(chǎn)品,因為它比氮化鎵更容易制造更大、更均勻的SiC晶片。隨著時間的推移,鑒于其更高的電子遷移率,氮化鎵將在小型高頻產(chǎn)品中找到自己的位置。碳化硅在較大的功率產(chǎn)品中將更可取,因為它的功率能力比氮化鎵更高的導(dǎo)熱性。
氮化鎵和碳化硅器件,與硅半導(dǎo)體(LDMOS) MOSFET和超級結(jié)MOSFET競爭。GaN和SiC器件在某些方面是相似的,但也有很大的差異。
寬禁帶半導(dǎo)體
WBG化合物半導(dǎo)體具有較高的電子遷移率和較高的帶隙能量,轉(zhuǎn)化為優(yōu)于硅的特性。由WBG化合物半導(dǎo)體制成的晶體管具有更高的擊穿電壓和對高溫的耐受性。這些器件在高壓和高功率應(yīng)用中比硅更有優(yōu)勢。
與硅相比,WBG晶體管的開關(guān)速度也更快,可在更高的頻率下工作。更低的“導(dǎo)通”電阻意味著它們耗散的功率更小,從而提升能效。這種獨特的特性組合使這些器件對汽車應(yīng)用中一些最嚴(yán)苛要求的電路具有吸引力,特別是混合動力和電動車。
GaN和SiC晶體管以應(yīng)對汽車電氣設(shè)備的挑戰(zhàn)
GaN和SiC器件的主要優(yōu)勢:高電壓能力,有650 V、900 V和1200 V的器件,
碳化硅:
更高的1700V.3300V和6500V。
更快的開關(guān)速度,更高的工作溫度。
更低導(dǎo)通電阻,功率耗散最小,能效更高。
GaN器件
在開關(guān)應(yīng)用中,通常“關(guān)斷”的增強型(或E型)器件是首選,這導(dǎo)致了E型GaN器件的發(fā)展。首先是兩個FET器件的級聯(lián)(圖2)。現(xiàn)在,標(biāo)準(zhǔn)的e型GaN器件已問世。它們可以在高達10兆赫頻率下進行開關(guān),功率達幾十千瓦。
GaN器件被廣泛用于無線設(shè)備中,作為頻率高達100 GHz的功率放大器。一些主要的用例是蜂窩基站功率放大器、軍用雷達、衛(wèi)星發(fā)射器和通用射頻放大。然而,由于高壓(高達1,000 V)、高溫和快速開關(guān),它們也被納入各種開關(guān)電源應(yīng)用,如DC-DC轉(zhuǎn)換器、逆變器和電池充電器。
SiC器件
SiC晶體管是天然的E型MOSFET。這些器件可在高達1 MHz的頻率下進行開關(guān),其電壓和電流水平遠高于硅MOSFET。最大漏源電壓高達約1,800 V,電流能力為100安培。此外,SiC器件的導(dǎo)通電阻比硅MOSFET低得多,因而在所有開關(guān)電源應(yīng)用(SMPS設(shè)計)中的能效更高。
SiC器件需要18至20伏的門極電壓驅(qū)動,導(dǎo)通具有低導(dǎo)通電阻的器件。標(biāo)準(zhǔn)的Si MOSFET只需要不到10伏的門極就能完全導(dǎo)通。此外,SiC器件需要一個-3至-5 V的門極驅(qū)動來切換到關(guān)斷狀態(tài)。SiC MOSFET在高壓、高電流的能力使它們很適合用于汽車電源電路。
在許多應(yīng)用中,IGBT正在被SiC器件取代。SiC器件可在更高的頻率下開關(guān),從而減少電感或變壓器的尺寸和成本,同時提高能效。此外,SiC可以比GaN處理更大的電流。
GaN和SiC器件存在競爭,特別是硅LDMOS MOSFET、超級結(jié)MOSFET和IGBT。在許多應(yīng)用中,正逐漸被GaN和SiC晶體管所取代。
總結(jié)GaN與SiC的比較,以下是重點:
GaN的開關(guān)速度比Si快。
SiC工作電壓比GaN更高。
SiC需要高的門極驅(qū)動電壓。
許多功率電路和器件可用GaN和SiC進行設(shè)計而得到改善。最大的受益者之一是汽車電氣系統(tǒng)。現(xiàn)代混合動力車和純電動車含有可使用這些器件的設(shè)備。其中一些流行的應(yīng)用是OBC、DC-DC轉(zhuǎn)換器、電機驅(qū)動器和激光雷達(LiDAR)。圖3指出了電動車中需要高功率開關(guān)晶體管的主要子系統(tǒng)。
上一篇:氮化鎵的未來:IDM還是Fabless
下一篇:BN氮化硼能否取代GaN氮化鎵?